metabelian, supersoluble, monomial
Aliases: C33⋊9D4, C32⋊6D12, C6.23S32, C3⋊Dic3⋊6S3, (C3×C6).36D6, C3⋊1(D6⋊S3), C3⋊3(C3⋊D12), C32⋊8(C3⋊D4), C2.2(C32⋊4D6), (C32×C6).14C22, (C2×C3⋊S3)⋊6S3, (C6×C3⋊S3)⋊4C2, (C3×C3⋊Dic3)⋊3C2, SmallGroup(216,132)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊9D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 428 in 94 conjugacy classes, 23 normal (11 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, D4, C32, C32, C32, Dic3, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C3⋊D4, C33, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, D6⋊S3, C3⋊D12, C3×C3⋊Dic3, C6×C3⋊S3, C33⋊9D4
Quotients: C1, C2, C22, S3, D4, D6, D12, C3⋊D4, S32, D6⋊S3, C3⋊D12, C32⋊4D6, C33⋊9D4
Character table of C33⋊9D4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 12A | 12B | |
size | 1 | 1 | 18 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | -2 | 0 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -√3 | √3 | orthogonal lifted from D12 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 1 | -2 | -2 | 1 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | √3 | -√3 | orthogonal lifted from D12 |
ρ14 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | 0 | √-3 | -√-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ15 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | -√-3 | 0 | 0 | √-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ16 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | -2 | 1 | -2 | 1 | 1 | 1 | 1 | -2 | √-3 | 0 | 0 | -√-3 | 0 | 0 | complex lifted from C3⋊D4 |
ρ17 | 2 | -2 | 0 | 0 | 2 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | -2 | 1 | 0 | -√-3 | √-3 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ18 | 4 | 4 | 0 | 0 | -2 | -2 | 4 | -2 | 1 | -2 | 1 | 1 | 0 | 4 | -2 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ19 | 4 | 4 | 0 | 0 | 4 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 0 | -2 | 4 | -2 | 1 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ20 | 4 | 4 | 0 | 0 | -2 | 4 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | -2 | -2 | 4 | 1 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ21 | 4 | -4 | 0 | 0 | -2 | 4 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 2 | 2 | -4 | -1 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ22 | 4 | -4 | 0 | 0 | 4 | -2 | -2 | 1 | -2 | -2 | 1 | 1 | 0 | 2 | -4 | 2 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C3⋊D12 |
ρ23 | 4 | -4 | 0 | 0 | -2 | -2 | 4 | -2 | 1 | -2 | 1 | 1 | 0 | -4 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 0 | 2 | 2 | 2 | 1-3√-3/2 | 1+3√-3/2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | 4 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 0 | -2 | -2 | -2 | -1+3√-3/2 | -1-3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
ρ26 | 4 | -4 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 0 | 2 | 2 | 2 | 1+3√-3/2 | 1-3√-3/2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | 4 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 0 | -2 | -2 | -2 | -1-3√-3/2 | -1+3√-3/2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊4D6 |
(1 20 21)(2 17 22)(3 18 23)(4 19 24)(5 14 10)(6 15 11)(7 16 12)(8 13 9)
(1 20 21)(2 22 17)(3 18 23)(4 24 19)(5 14 10)(6 11 15)(7 16 12)(8 9 13)
(1 21 20)(2 17 22)(3 23 18)(4 19 24)(5 14 10)(6 11 15)(7 16 12)(8 9 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 8)(2 7)(3 6)(4 5)(9 20)(10 19)(11 18)(12 17)(13 21)(14 24)(15 23)(16 22)
G:=sub<Sym(24)| (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,14,10)(6,15,11)(7,16,12)(8,13,9), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22)>;
G:=Group( (1,20,21)(2,17,22)(3,18,23)(4,19,24)(5,14,10)(6,15,11)(7,16,12)(8,13,9), (1,20,21)(2,22,17)(3,18,23)(4,24,19)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,8)(2,7)(3,6)(4,5)(9,20)(10,19)(11,18)(12,17)(13,21)(14,24)(15,23)(16,22) );
G=PermutationGroup([[(1,20,21),(2,17,22),(3,18,23),(4,19,24),(5,14,10),(6,15,11),(7,16,12),(8,13,9)], [(1,20,21),(2,22,17),(3,18,23),(4,24,19),(5,14,10),(6,11,15),(7,16,12),(8,9,13)], [(1,21,20),(2,17,22),(3,23,18),(4,19,24),(5,14,10),(6,11,15),(7,16,12),(8,9,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,8),(2,7),(3,6),(4,5),(9,20),(10,19),(11,18),(12,17),(13,21),(14,24),(15,23),(16,22)]])
G:=TransitiveGroup(24,550);
C33⋊9D4 is a maximal subgroup of
C33⋊D8 C33⋊6SD16 C32⋊2D24 C33⋊8SD16 S3×D6⋊S3 S3×C3⋊D12 (S3×C6)⋊D6 D6.S32 D6.6S32 Dic3.S32 C12⋊S3⋊12S3 C12.95S32 C12⋊3S32 C62.96D6 C62⋊24D6
C33⋊9D4 is a maximal quotient of
C33⋊9D8 C33⋊18SD16 C33⋊9Q16 C62.84D6 C62.85D6
Matrix representation of C33⋊9D4 ►in GL4(𝔽7) generated by
5 | 3 | 2 | 3 |
1 | 3 | 3 | 0 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 5 | 2 | 6 |
0 | 2 | 0 | 2 |
3 | 3 | 6 | 1 |
0 | 0 | 0 | 4 |
6 | 5 | 0 | 5 |
0 | 0 | 4 | 3 |
1 | 6 | 3 | 5 |
1 | 1 | 3 | 5 |
2 | 6 | 3 | 4 |
0 | 4 | 6 | 5 |
4 | 4 | 1 | 6 |
5 | 2 | 1 | 0 |
G:=sub<GL(4,GF(7))| [5,1,4,0,3,3,4,0,2,3,0,0,3,0,6,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[0,0,3,0,5,2,3,0,2,0,6,0,6,2,1,4],[6,0,1,1,5,0,6,1,0,4,3,3,5,3,5,5],[2,0,4,5,6,4,4,2,3,6,1,1,4,5,6,0] >;
C33⋊9D4 in GAP, Magma, Sage, TeX
C_3^3\rtimes_9D_4
% in TeX
G:=Group("C3^3:9D4");
// GroupNames label
G:=SmallGroup(216,132);
// by ID
G=gap.SmallGroup(216,132);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,73,387,201,730,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export